Nonparametric Goodness of Fit Test for Regression Using Local Residuals by Neighbor Join Methods

نویسنده

  • Francis Galton
چکیده

Since Sir Francis Galton presented his rudimentary idea of regression line in 1877, regression analysis has become a center of statistical analysis in both observational studies and experimental studies. With the advance of computational environment, more generalized and sophisticated models than simple linear regression, such as multivariate, polynomial, exponential, logistic, time-series, semi-parametric (Proportional Hazards Regression) and general nonlinear regression, were encompassed. It is because regression analysis provides the conceptual simplicity of using an equation to represent a relationship between predictor variables and their associated response. (1) However, as much as attractive it is, regression can be easily misused. Regression which is the core of parametric methods builds upon certain underlying assumptions even in its most general form. Therefore, any regression model cannot be validated unless reasonable satisfaction of those assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonparametric Goodness-of-fit-based Test for Conditional Heteroskedasticity∗

In this paper we propose a nonparametric test for conditional heteroskedasticity based on a new measure of nonparametric goodness-of-fit (R2). In analogy with the ANOVA tools for classical linear regression models, the nonparametric R2 is obtained for the local polynomial regression of the residuals from a parametric regression on some covariates. It is close to 0 under the null hypothesis of c...

متن کامل

An empirical likelihood goodness-of-fit test for time series

Standard goodness-of-fit tests for a parametric regression model against a series of nonparametric alternatives are based on residuals arising from a fitted model.When a parametric regression model is compared with a nonparametric model, goodness-of-fit testing can be naturally approached by evaluating the likelihood of the parametric model within a nonparametric framework. We employ the empiri...

متن کامل

Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example

Nonparametric regression models do not require the specification of the functional form between the outcome and the covariates. Despite their popularity, the amount of diagnostic statistics, in comparison to their parametric counterparts, is small. We propose a goodness-of-fit test for nonparametric regression models with linear smoother form. In particular, we apply this testing framework to s...

متن کامل

Goodness-of-Fit Tests for Parametric Regression Models Based on Empirical Characteristic Functions

Test procedures are constructed for testing the goodness-of-fit in parametric regression models. The test statistic is in the form of an L2 distance between the empirical characteristic function of the residuals in a parametric regression fit and the corresponding empirical characteristic function of the residuals in a non-parametric regression fit. The asymptotic null distribution as well as t...

متن کامل

Bootstrap tests for the error distribution in linear and nonparametric regression models

In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically distribution-free and the parametric bootstrap is applied to deal with this problem. The performance of the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005